Software and Hardware Testing/Progress

Today in the Systems Engineering and Integration(SEaI) division,  students and mentors tested the gyroscope assembly (PN: 1010167) and integrated the part into our system. SEaI also began developing software routines for a closed loop control of the robot when there is no steering input. Tomorrow, SEaI will also begin development on the autonomous routines/controller for the robot. SEaI hopes to replicate the 2008 968 autonomous controller with major changes, which, makes the system more efficient and elegant.

At DAVECO, David and his associates assembled the bumper assembly minus the Cordura fabric. Mock-ups were developed to visualize the stitch patterns required to have bumper fabric with no folds. The contractor will continue manufacturing of the bumpers for the next few days.

Stay tuned.

Progress

Today, the team worked to optimize the kicker and arm. The surgical tubing on the kicker was replaced with trampoline springs, to make it more easy to get a repeatable and known force. A gas spring was installed on the first stage of the arm to aid in arm deployment. Finally, limit switches were added in the pole grabber and on the arm to completely automate the lifting.

Now, thanks to help from the software team, once the arm deployed switch is flipped, the arm will deploy automatically. While the switch is still up, the robot will lift immediately once it is locked onto the bar and will stop when it has reached its final lifted position. This automation is an improvement in speed over what human drivers were able to obtain, due to prior uncertainty about whether or not the robot was locked on the pole.

Design Progress

Today, the design team worked to design the polycarbonate side shields for the robots. Due to weight issues, we will probably not be able to implement all of the polycarbonate shields on the robot.

The team also designed the cutouts which will be made on the bumper spacer tubes. The cutouts reduce the weight of the tube by over 50% by pocketing the side faces to keep proper bumper spacing and facing down the top and bottom faces from 1/8″ to 1/16″.

Score to Hang – 10 seconds

With mentors as drivers, no less…

open source video, online video platform, video streaming, video solutions

Design & Manufacturing Progress

Today, the design team completed the design on replacements for the Hard Stop Mounting Plates. The replacements will extend the plate back to support the PTO shaft directly above the gearboxes after said shaft was identified as a potential point of failure. The plates also include provisions for a new bar to mount the surgical tubing for the kicker on.

Later on in the day, the manufacturing team built two prototypes of aforementioned plates which will be installed and tested tomorrow.

Modified Kicker

Today the kicker plate was shortened.  The shorter plate contacts the ball higher up on the ball, giving it a flatter trajectory. A rope was added as a hard stop, which prevents the kicker from contacting the roller system.
open source video, online video platform, video streaming, video solutions
open source video, online video platform, video streaming, video solutions
open source video, online video platform, video streaming, video solutions

Robot Shipped

As of 2:00 PM today the robot was delivered to drayage and confirmation of shipment has been sent to FIRST.

Robot Crated

The Robot Was Crated Tonight.  Final Weights of Shipped Components:

  • Drivebase (without cRio) – 52 lbs
  • Arm – 19 lbs

The superstructure was withheld as part of the 65 lb withholding allowance.

Kickin Balls

open source video, online video platform, video streaming, video solutions

Feb 19 Progress

Today, we (almost) finished assembling the drivetrain and kicker winch gearboxes. We also made further progress on the bumper fabrication.

Here’s some photos to pass your time.